If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.5x^2+3x-45=0
a = 4.5; b = 3; c = -45;
Δ = b2-4ac
Δ = 32-4·4.5·(-45)
Δ = 819
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{819}=\sqrt{9*91}=\sqrt{9}*\sqrt{91}=3\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{91}}{2*4.5}=\frac{-3-3\sqrt{91}}{9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{91}}{2*4.5}=\frac{-3+3\sqrt{91}}{9} $
| -28=-7/2v | | -70a+96a+-80a+60a=-24 | | -8x+5=11x+3 | | 4u/7=-16 | | 13u=5u+32 | | 20(7-6x)-27(3-15x)=3(3x-5)-18 | | -7/3=5/7y-5/2 | | f/5=08 | | 4h=140 | | 7+3(2g-6)=-20 | | 5(-5-x)=5 | | 0=(x^2)-6x+(51/5) | | m=4-(-4)/1-(-1) | | 7x=16+9x | | 7x-23+5x+11=90 | | 6x+8-4x=(x+2) | | 5x+8=20+4x | | 15y-48=y | | 10+x=7x+34 | | 4d/168=0 | | 1+1.2(7x+10)=4.1-(-8.6x-1) | | 8X-7=2x-13 | | x+90=(5x-114) | | (7x-2)+33=(11x+11) | | -5(3-x)=-2+-9 | | .16x=10 | | 4+1/2(6x+8)=2/3(9x+6)-8 | | 17=7+5v | | X+14=7(x+7) | | 43+x=(2x+10) | | 5/9(7-6x))-(3/4(3-15x))=(1/12(3x-5))-(1/2) | | 2+15x=0.875x |